Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury

نویسندگان

  • Youqun Huang
  • Yan Liu
  • Ling Li
  • Baihai Su
  • Lichuan Yang
  • Wenxin Fan
  • Qinghua Yin
  • Lijia Chen
  • Tianlei Cui
  • Jie Zhang
  • Yanrong Lu
  • Jingqiu Cheng
  • Ping Fu
  • Fang Liu
چکیده

BACKGROUND MicroRNAs have been demonstrated to play an important role in the pathogenesis of diabetic nephropathy (DN). In this study, we investigated both the repertoire of miRNAs in the kidneys of patients with DN and their potential regulatory role in inflammation-mediated glomerular endothelial injury. METHODS The miRNA expression profiling of the renal biopsy samples was performed by a microarray analysis; then, in situ hybridization and real-time polymerase chain reaction (PCR) were used to determine the localization and expression of two of the miRNAs significantly up-regulated in human DN kidney samples, miR-155 and miR-146a, in the kidney tissues from type 1 and type 2 DN rat models. Human renal glomerular endothelial cells (HRGECs) cultured under high-glucose conditions were transfected with miR-155 and miR-146a mimics, and the transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, and nuclear factor (NF)-κB expressions were examined by western blot, real-time PCR, and an electrophoresis mobility shift assay. RESULTS The expression of both miR-155 and miR-146a was increased more than fivefold in the kidney samples of the DN patients compared with the controls, and the miR-155 expression was closely correlated with the serum creatinine levels (R = 0.95, P = 0.004). During the induction and progression of the disease in type 1 and type 2 DN rat models, miR-155 and miR-146a were demonstrated to increase gradually. In vitro, high glucose induced the over-expression of miR-155 and miR-146a in the HRGECs, which, in turn, increased the TNF-α, TGF-β1, and NF-κB expression. CONCLUSIONS Taken together, these findings indicate that the increased expression of miR-155 and miR-146a in the DN patients and in the experimental DN animal models was found to contribute to inflammation-mediated glomerular endothelial injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated Levels of miR-146a and miR-155 in Kidney Biopsy and Urine from Patients with IgA Nephropathy

BACKGROUND Previous studies suggested miR-146a and miR-155 play important roles in innate and adaptive immune responses. We studied intra-renal and urinary levels of miR-146a and miR-155 in patients with immunoglobulin A nephropathy (IgAN). METHODS Intra-renal and urinary levels of miR-146a and miR-155 are quantified in 43 patients with IgAN; the result was compared to 20 nephrectomy specimen...

متن کامل

Hyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells

Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...

متن کامل

Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1.

Podocyte injury is an early event in diabetic kidney disease and is a hallmark of glomerulopathy. MicroRNA-146a (miR-146a) is highly expressed in many cell types under homeostatic conditions, and plays an important anti-inflammatory role in myeloid cells. However, its role in podocytes is unclear. Here, we show that miR-146a expression levels decrease in the glomeruli of patients with type 2 di...

متن کامل

MicroRNA-146a Decreases High Glucose/Thrombin-Induced Endothelial Inflammation by Inhibiting NAPDH Oxidase 4 Expression

Diabetes is associated with hyperglycemia and increased thrombin production. However, it is unknown whether a combination of high glucose and thrombin can modulate the expression of NAPDH oxidase (Nox) subtypes in human aortic endothelial cells (HAECs). Moreover, we investigated the role of a diabetes-associated microRNA (miR-146a) in a diabetic atherothrombosis model. We showed that high gluco...

متن کامل

The Role of MicroRNA-146a in the Pathogenesis of the Diabetic Wound-Healing Impairment

The impairment in diabetic wound healing represents a significant clinical problem. Chronic inflammation is thought to play a central role in the pathogenesis of this impairment. We have previously shown that treatment of diabetic murine wounds with mesenchymal stem cells (MSCs) can improve healing, but the mechanisms are not completely defined. MicroRNA-146a (miR-146a) has been implicated in r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014